Building Solidity From Quantum Weirdness

Article by


One of the biggest pastimes of quantum physicists is pondering the nature of reality. However, when you move from everyday objects like chairs and tables down to the quantum level—the realm of particles like atoms and electrons—things tend to get a little weird.

Here, in this quantum world, the thinking that gets us through our day, that allows us to pick up objects and set them on other objects, no longer applies. We move beyond interacting with the world at a scale that can be measured with rulers, and into one where particles are the main increment.

It turns out, as physicist Adam Frank explains in the NPR radio program 13.7: Cosmos & Culture, that making this transition to the world of particles requires us to first understand one of the most fundamental concepts of quantum physics—the wave function.

Frank puts the wave function into perspective by looking at it through the lens of the atom. Objects are composed of atoms and “each atom is made of electrons and a nucleus that are all the merest flecks of matter separated by oceans and oceans of nothingness,” says Frank. If that is true, then how can anything feel solid?

This is where the wave function—and wave-particle duality — comes in. Particles like electrons can exhibit both wave-like and particle-like behavior, depending on the kind of experiment you are running. Particles exist in a single point. Waves, however, spread out in many directions—which is how atoms can form solid objects.

The wave function describes this wave-like spread of electrons around a nucleus—also known as the “electron cloud.” The wave function also gives you the probability that an electron will exist at specific locations, hence the other name for the cloud of electrons around the nucleus—the “cloud of possibility.”

So when we think of electrons in terms of the wave function, says Frank, atoms are no longer mostly empty space. And the electron cloud around the nucleus is not infinitesimally small; it’s actually the size of the atom itself. Which means that objects that you can hold in your hand and place on top of other objects are not filled with empty space, either.

That, of course, is a good thing. Without solidity, it would be very difficult to interact with the world. But this also shows that the “weirdness” of quantum physics can lead to some very concrete aspects of our macro-universe.


The Dangers of Quantum Tech

Article by ,

The United Nations has proclaimed 2025 as the International Year of Quantum Science and Technology

Indigenous Futurism?

Article by

National Geographic Explorer Keolu Fox says the key to harnessing the technology of tomorrow is centering traditions of the past

Magic Died When Art and Science Split

Article by

Renée Bergland’s 3 greatest revelations while writing Natural Magic: Emily Dickinson, Charles Darwin, and the Dawn of Modern Science

Quantum physics reveals the unity of the universe

Article by

Quantum physics revives the ancient idea of universal oneness that Christianity unjustly excluded from our culture

#77 Regenerative Medicine

Podcast with

Exploring the frontiers of alternative medicine and healing modalities with renowned Cerebral Spiral Fluid expert.

Pixels, Patterns & Perspectives

Video with

Physicist and Author Sky Nelson-Isaacs urges us to see the world differently and consider how pixels and patterns converge to evoke a new perspective.

Time to Support Indigenous Science

Article by

Faced with the profound challenges of a rapidly changing environment, society needs other ways of knowing to illuminate a different way forward

Resonantly Perfect Solar System Found

Article by

Researchers have located "the perfect solar system", forged without the violent collisions that made our own a hotchpotch of different-sized planets

Support SAND with a Donation

Science and Nonduality is a nonprofit organization. Your donation goes towards the development of our vision and the growth of our community.
Thank you for your support!