Even Large Molecules Can Behave Like Waves

Article by

In many ways, quantum mechanics is very strange — like particles being connected across vast distances or being able to act like both waves and particles. But at the small scales of photons, electrons and atoms, this strangeness seems oddly fitting.

However, once you get up to the macro world that we all inhabit, those strange phenomena seem like just that — strange. You wouldn’t find baseballs entangled in such a way that hitting one affects another miles away. Or see a chicken acting like both a chicken and a wave.

At some point, as you move from the micro world to the macro world, the laws (and quirks) of quantum mechanics cease to operate (or operate in different ways that we have yet to discover). So where is the dividing line between the two (seemingly) separate worlds of quantum physics and classical physics?

The answer to that is still not entirely clear. But a new experiment by researchers from the University of Vienna in Austria suggests that even relatively large molecules can fall under the sway of quantum mechanics — under the right circumstances.

The results of the new study were published September 23 in Nature Physics.

The new experiment is a souped-up version of the classic double-slit experiment, which was first conducted in the early 1800s. In this experiment, researchers found that when they aimed light waves at a barrier with two slits, the waves created an alternating light-dark interference pattern after they had passed through.

But it’s not just waves passing through slits that create this interference pattern. Individual particles of light (a.k.a. photons) do it as well, which suggests they can act as both particles and waves. Later experiments showed that electrons and single atoms can also produce a wave-like interference pattern. And one experiment achieved this with a molecule made up of 810 atoms.

Now physicists have stretched the quantum world a little closer to our macro world. They successfully ran the double-slit experiment using a synthetic molecule containing as many as 2,000 atoms — the largest to be tested to date.

A synthetic molecule was used because the experiment required a molecule that was stable and would fly in a directed beam toward the barrier with the slits. The scientists also had to use a 2-meter long interferometer, the device that is used in the double-slit experiments.

Although these synthetic molecules aren’t quite baseball-sized (or even golf ball-sized), the experiment pushes the limits of quantum mechanics even further. Future experiments may bring the quantum world even closer to our macro world.

Total
0
Shares

David Bohm, Implicate Order and Holomovement

Article by

David Bohm was one of the most distinguished theoretical physicists of his generation, and a fearless challenger of scientific orthodoxy

Semitic Oneness & Cantor’s Infinity

Article by

From Semitic Oneness to Jewish Election Through Cantor’s Infinity I stumbled upon a surprising connection between quantum physics and Semitic nomadic spirituality

Can Trauma Be Passed Down Through our Genes?

Video with

How can identical twins with identical genomes acquire different characteristics over their lifetimes?

What Happens in a Mind That Can’t ‘See’

Article by

Two years ago, Sarah Shomstein realized she didn’t have a mind’s eye

The Mysterious Number That Shaped Our Universe

Video with

This constant represented by the Greek letter alpha is just a dimensionless number, so no matter what units you use, it will always have the same value, about 1/137.

The Case for Indigenous Knowledge as Science

Video with

Calls for better recognition from the scientific community arguing that Indigenous knowledge is science and that's what we should call it.

Listen to our Sonified Universe

Article by

Three new sonifications of images from NASA’s Chandra X-ray Observatory and other telescopes have been released in conjunction with a new documentary about the project that makes its debut on the NASA+ streaming platform

The Flow State

Article by

The science of the elusive creative mindset that can improve your life As a professional ballet dancer, Julia Christensen knew the flow state well: a total absorption in her body’s movements, without the constant chatter that typically accompanies our

Support SAND with a Donation

Science and Nonduality is a nonprofit organization. Your donation goes towards the development of our vision and the growth of our community.
Thank you for your support!