Physicists Entangle Particles Across Time

Article by

“People like us, who believe in physics, know that the distinction between past, present and future is only a stubbornly persistent illusion.”
~ Albert Einstein

If you thought that the quantum phenomena of particles being “entangled” across vast distances of space was strange, that’s nothing. Israeli physicists have shown that they can link particles together so that measuring one affects the other, even if the particles never existed at the same time.

Entanglement is one of the stranger features of quantum mechanics — although there are so many to choose from that it’s hard to decide. Two quantum particles, such as photons, can be linked together — entangled — so that measuring one causes the other to “collapse” into a certain state. This occurs even when the entangled particles are far apart.

Several years ago, researchers from Hebrew University of Jerusalem showed that it’s also possible to entangle particles across time. While entanglement usually involves creating two particles at the same time, the researchers were able to entangle two particles that never overlapped temporally.

Their research was published in 2013 in Physical Review Letters. To accomplish this feat, the researchers used a process known as “entanglement swapping.” This technique involves researchers firing a laser at a special crystal to create two pairs of entangled photons — 1 and 2, and 3 and 4. At this point, photons 1 and 4 are not entangled. Due to the uncertainty of quantum theory, photons can exist in two states at the same time — polarized vertically and horizontally. When researchers measure the photon, it randomly takes on, or collapses into, one of those states.

Researchers can use this behavior of quantum particles to entangle photons 2 and 3 in a process called “projective measurement.” This measurement entangles the photons, but also destroys them. This can also be done in a certain way that the measurement entangles photons 1 and 4. Adrian Cho describes this on Science Magazine  as two pairs of gears being connected to form a four-gear chain.

In recent years, physicists have discovered that the two initial pairs of entangled photons don’t have to be created at the same time in order for projective measurement to work. This is how the Israeli researchers were able to entangle particles across time.

First they created entangled photons 1 and 2. Then they measured photon 1, which set the state of photon 2 and destroyed photon 1. Then they created entangled photons 3 and 4, and carried out the projective measurement. This swapped the entanglement of 1-2 onto 2-3.

When the researchers later measured photon 4, they found that its state and the state of photon 1 were connected, or correlated. Photons 2 and 3 passed on the entanglement from photon 1 to photon 4, like gears. So even though photons 1 and 4 never coexisted, researchers were still able to entangle them.

The researchers speculated on some of the possibilities of this finding. Measuring photon 1 may have set the future state of photon 4, or measuring photon 4 may have set the state of photon 1 in the past. Either way, this experiment shows that what happens at the quantum level doesn’t always mesh with our everyday concepts of space and time.

However, Einstein had already disposed of Newton’s idea of events happening at the same time, or simultaneity. His general theory of relativity showed that “when” something occurs depends on where you are in relation to what you are observing, or your frame of reference. So saying that two events happen “at the same time” doesn’t really work at a metaphysical level. It’s clear, though, that the particles, their properties, and the events that occurred during the experiment do exist. These are not under debate. What’s less certain is which properties should be assigned to the particles and when.

But this may be less important when you let go of the common view of time that gets us through our day. Elise Crull, an assistant professor in history and philosophy of science at the City College of New York, suggests on Aeon  that these kinds of mind-boggling mysteries about entangled particles are more “disagreements about labeling, brought about by relativity.” Although spatial and temporal entanglement may make us uncomfortable at times, Crull says that we can’t afford to ignore these findings in whatever metaphysics we develop in the future.

Total
0
Shares

Listen to our Sonified Universe

Article by

Three new sonifications of images from NASA’s Chandra X-ray Observatory and other telescopes have been released in conjunction with a new documentary about the project that makes its debut on the NASA+ streaming platform

The Flow State

Article by

The science of the elusive creative mindset that can improve your life As a professional ballet dancer, Julia Christensen knew the flow state well: a total absorption in her body’s movements, without the constant chatter that typically accompanies our

Uncertain Selves & Quantum Awareness

Article by

Quantum physics offers a fascinating metaphor for the mind, an intriguing lens through which to view thoughts, emotions, and experiences

#95 Nature of Reality

Podcast with

High-tech luminary discusses his new theory of consciousness, AI and the nature of experience.

The Dangers of Quantum Tech

Article by ,

The United Nations has proclaimed 2025 as the International Year of Quantum Science and Technology

Indigenous Futurism?

Article by

National Geographic Explorer Keolu Fox says the key to harnessing the technology of tomorrow is centering traditions of the past

Magic Died When Art and Science Split

Article by

Renée Bergland’s 3 greatest revelations while writing Natural Magic: Emily Dickinson, Charles Darwin, and the Dawn of Modern Science

Quantum physics reveals the unity of the universe

Article by

Quantum physics revives the ancient idea of universal oneness that Christianity unjustly excluded from our culture

Support SAND with a Donation

Science and Nonduality is a nonprofit organization. Your donation goes towards the development of our vision and the growth of our community.
Thank you for your support!