The Taste of Mystery

proton radius

For a physicist, there is nothing more exciting than an experiment that fails to behave. The thrill is akin to that a religious person confronted with a “miracle”. Suddenly appears a rift in the well-ordered, almost boring world that we know so well, a crack in the fabric of that reality we sometimes feel imprisoned in. Although most scientists would never admit it, could it be that this sudden event, which contradicts something we think we know, triggers a child-like hope for an “elsewhere” governed by magic rather than hard and fast rules, a mysterious and hidden world hidden at the bottom of the wardrobe where freedom and awe would reign? Or is it that for a moment, we come in contact with the fundamental mystery inherent in all things, a taste of the ultimate reality?

No matter what the psychological or mystical underpinning, there is no denying the excitement. Earlier this month, a small bump in the LHC data hinting at new physics generated hundred of papers attempting an explanation… before being chalked up to a statistical aberration last week. But right now, something well out of the box has been confirmed and it has the community wound-up.

The culprit? A new measurement of the radius of the proton. We can measure it by its influence on whatever is orbiting it, typically an electron. The result is well established. But in 2006, a team of researchers had the idea of replacing the electron by a muon. Like the electron, the muon is a lepton, with a mass close to that of a proton’s and a half life of only 2.2 microseconds. But beyond the mass and instability, the muon should otherwise behave like an electron. Just before the atom comes apart, they measured the proton radius. Surprise: it came out 5% smaller than expected.

More recently, the team has repeated the experiment using a deuterium nucleus, which has one proton and one neutron. They obtained the same results, and by now, it’s impossible to blame a statistical error: the outcome is significant to 7.5 sigma!

So what? Well, the most fundamental theories, the Standard Model, Quantum Chromodynamics, can’t explain the difference, and no one has a better idea.

Time to savor the taste of Mystery…

Total
0
Shares

Decolonizing Science

Article by

We are witnessing a resurgence of indigenous knowledge and growing acknowledgement of its scientific value worldwide

Wholeness & Fragmentation

Video with

The problem with our "civilized" and compartmentalized ways of thinking, which is fragmented.

Assembly Theory

Article by

Bold New 'Theory of Everything' Could Unite Physics And Evolution

The Star Compass: kāpehu whetū

Article by

Indigenous Polynesian technology for navigating using the stars

#55 Cerebrospinal Fluid

Podcast with

A fascinating lecture on the potential mystical properties of fluid in our bodies

The Convergence of Science and Spirituality

Video with ,

A video version of our popular Sounds of SAND Podcast episode

A 9-minute journey inside a black hole

Video with

Ever wonder what would happen if we got sucked into a black hole? Turns out we could live in it — if it was big enough.

A New Kind of Symmetry Shakes Up Physics

Article by

So-called “higher symmetries” are illuminating everything from particle decays to the behavior of complex quantum systems

Support SAND with a Donation

Science and Nonduality is a nonprofit organization. Your donation goes directly towards the development of our vision and the growth of our community.
Thank you for your support!